Holographic Phase Retrieval and Optimal Reference Design

David Barmherzig

December 6, 2018

Collaborators

- Dr. Ju Sun
- Prof. Emmanuel Candès
- Dr. T.J. Lane
- Po-Nan Li

Table of Contents

- 1 The Holographic Phase Retrieval Problem
- Referenced Deconvolution Algorithm
- 3 Error Analysis and Optimal Reference Design
- 4 Numerical Experiments

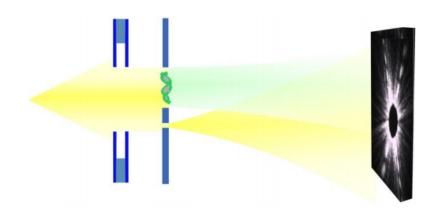
The Phase Retrieval Problem

Given
$$|\widehat{X}(\omega)|^2 \doteq \left| \int_{t \in T} X(t) e^{-i\omega t} \right|^2$$
, $\omega \in \Omega$,

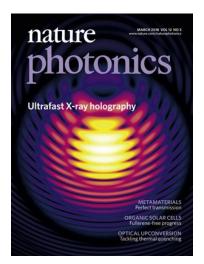
Coherent Diffraction Imaging (CDI)



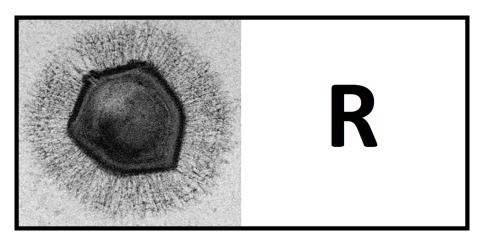
Holographic CDI



Holographic CDI



Specimen and Reference Setup



Popular Reference Choices

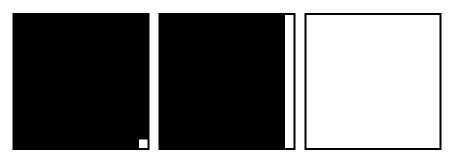


Figure: Pinhole, Slit, and Block references.

The Holographic Phase Retrieval Problem

Given
$$R \in \mathbb{R}^{n \times n}$$
, $|\widehat{[X,R]}|^2 \in \mathbb{R}^{m \times m}$, Recover $X \in \mathbb{R}^{n \times n}$.

The Holographic Phase Retrieval Problem

Given
$$R \in \mathbb{R}^{n \times n}$$
, $|\widehat{[X,R]}|^2 \in \mathbb{R}^{m \times m}$, Recover $X \in \mathbb{R}^{n \times n}$.

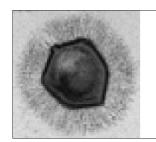
Knowing R makes a huge difference!

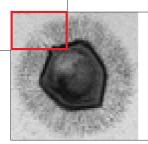
Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(\left|\widehat{[X,R]}\right|^2)$.

- Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(|\widehat{[X,R]}|^2)$.
- Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$.

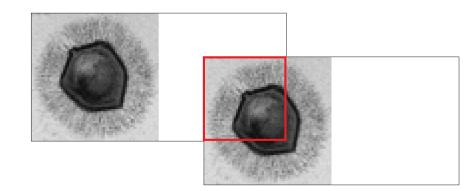
Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(|\widehat{[X,R]}|^2)$.

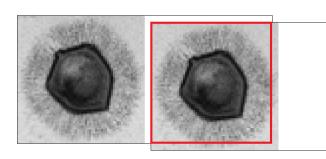
Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$. This is one quadrant of the cross-correlation of X and R.





Exact Recovery for Noiseless Measurements





Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(|\widehat{[X,R]}|^2)$.

Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$.

- Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(|\widehat{[X,R]}|^2)$.
- Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$. This is one quadrant of the cross-correlation of X and R.
- Step 3: De-convolve R and X.

$$\operatorname{vec}(X) = M_R^{-1} \operatorname{vec}(C_{[X,R]}).$$

For

$$R = \begin{bmatrix} r_{00} & r_{01} & r_{02} \\ r_{10} & r_{11} & r_{12} \\ r_{20} & r_{21} & r_{22} \end{bmatrix},$$

$$M_{R} = \begin{bmatrix} r_{00} & r_{01} & r_{02} \\ r_{10} & r_{11} & r_{12} \\ r_{20} & r_{21} & r_{22} \end{bmatrix},$$

$$M_{R} = \begin{bmatrix} r_{22} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ r_{12} & r_{22} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ r_{02} & r_{12} & r_{22} & 0 & 0 & 0 & 0 & 0 & 0 \\ r_{21} & 0 & 0 & r_{22} & 0 & 0 & 0 & 0 & 0 & 0 \\ r_{11} & r_{21} & 0 & r_{12} & r_{22} & 0 & 0 & 0 & 0 & 0 \\ r_{01} & r_{11} & r_{21} & r_{02} & r_{12} & r_{22} & 0 & 0 & 0 & 0 \\ r_{20} & 0 & 0 & r_{21} & 0 & 0 & r_{22} & 0 & 0 & 0 \\ r_{10} & r_{20} & 0 & r_{11} & r_{21} & 0 & r_{12} & r_{22} & 0 & 0 \\ r_{00} & r_{10} & r_{20} & r_{01} & r_{11} & r_{21} & r_{02} & r_{12} & r_{22} & 0 \end{bmatrix}$$

Altogether, this gives a linear relationship between $\left|\widehat{[X,R]}\right|^2$ and X !

$$\operatorname{vec}(X) = T_R \operatorname{vec}(|\widehat{[X,R]}|^2).$$

Noisy Data

Given Y^* , a possibly noise-corrupted version of $Y = |[X, R]|^2$, this procedure, – the **Referenced Deconvolution Algorithm** – gives X^* , the solution of

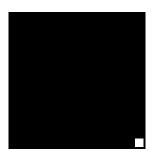
$$\min_{X} \frac{1}{2} \left\| Y^{\star} - \left| \widehat{[X, R]} \right|^{2} \right\|^{2}.$$

Special Cases

For popular reference choices, M_R has a special structure that is fast to invert!

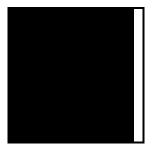
This places within a broader context various reference-specific algorithms.

Pinhole Reference



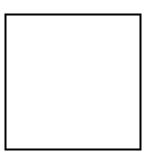
$$M_R = I_{n^2}$$
.

Slit Reference



 $M_R = I_n \otimes D_n$, where D_n is the difference matrix (1's on diagonal, -1's on first subdiagonal).

Block Reference



 $M_R = D_n \otimes D_n$.

Error Formula

Since
$$\text{vec}(X) = T_R \text{vec}(Y)$$
 and $\text{vec}(X^*) = T_R \text{vec}(Y^*)$,

$$\mathbb{E}||X^* - X||_F^2$$

$$= \left\langle T_R^* T_R, \mathbb{E} \Big(\operatorname{vec}(Y^*) - \operatorname{vec}(Y) \Big) \Big(\operatorname{vec}(Y^*) - \operatorname{vec}(Y) \Big)^* \right\rangle_F.$$

Poisson shot noise model

Quantum mechanics \to # of photons emitted by an X-ray source is random (Poisson process)

Np: total # of photons emitted

$$\widehat{Y} \sim_{\text{ind}} \frac{\|Y\|_1}{N_p} \text{Pois}\Big(\frac{N_p}{\|Y\|_1}Y\Big),$$

Poisson noise error formula

$$\mathbb{E}||X^* - X||_F^2 = \left\langle T_R^* T_R, \frac{||Y||_1}{N_p} \operatorname{diag}(\operatorname{vec}(Y)) \right\rangle_F$$
$$= \left\langle S_R, \frac{||Y||_1}{N_p} Y \right\rangle_F,$$

where $S_R = \text{reshape}\Big(\operatorname{diag}(T_R^*T_R), m, m\Big).$

Poisson noise error formula

$$\mathbb{E}||X^* - X||_F^2 = \left\langle T_R^* T_R, \frac{||Y||_1}{N_p} \operatorname{diag}(\operatorname{vec}(Y)) \right\rangle_F$$
$$= \left\langle S_R, \frac{||Y||_1}{N_p} Y \right\rangle_F,$$

where $S_R = \text{reshape}\Big(\text{diag}(T_R^*T_R), m, m\Big).$ $\rightarrow \text{ each frequency } Y(k_1, k_2) \text{ is scaled by } S_R(k_1, k_2).$ Computationally inefficient to compute $T_R^*T_R$ just to extract its diagonal.

Theorem

$$\mathbb{E}\|X^{\star} - X\|_F^2 = \text{vec}((M_R^{-1})^T)^T W_Y \text{vec}((M_R^{-1})^T),$$

where

$$W_Y = I_{n^2} \otimes \Big(\sum_{k_1,k_2=0}^{m-1} \frac{\|Y\|_1}{N_P} Y(k_1,k_2) W_{k_1,k_2}\Big),$$

and
$$W_{k_1,k_2} \in \mathbb{R}^{n^2 \times n^2}$$
 is given by
$$W_{k_1,k_2}(p,q) = \exp\left(\frac{2\pi i}{m}(k_1(p_1-q_1)+k_2(p_2-q_2))\right) \text{ for } p_1,p_2,q_1,q_2 \in \{0,\dots,n-1\}, \ p=np_1+p_2 \text{ and } p=np_1+p_2.$$

Uniform Lower Bound on $S_R(k_1, k_2)$

Theorem

For any reference R and all $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_R(k_1,k_2)\geq \frac{1}{m^4}.$$

Pinhole Reference

Theorem

For the pinhole reference R_p and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_p}(k_1,k_2)=\frac{n^2}{m^4}.$$

Slit Reference

Theorem

For the slit reference R_s and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_s}(k_1, k_2) = \frac{n}{m^2} \left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_2}{m}) \right) \right).$$

Block Reference

Theorem

For the block reference R_b and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_b}(k_1,k_2) =$$

$$\left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_1}{m})\right)\right) \left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_2}{m})\right)\right).$$

So which is the best reference choice?

So which is the best reference choice?

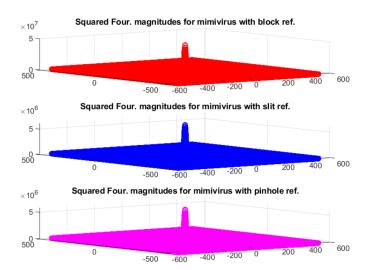
 \rightarrow Depends on the frequency distribution of Y.

So which is the best reference choice?

 \rightarrow Depends on the frequency distribution of Y.

Typically, Y has a rapidly decaying shape.

Mimivirus Spectrum Squared Magnitudes



Block Reference Optimality

For a decaying frequency specimen, the block reference provides the best error scaling of the three popular choices.

It is also optimal or near-optimal amongst all possible references.

Block Reference Optimality

For a decaying frequency specimen, the block reference provides the best error scaling of the three popular choices.

It is also optimal or near-optimal amongst all possible references.

Theorem

For the block reference R_b , $S_{R_b}(k_1, k_2)$ deviates from the uniform lower bound on $S_R(k_1, k_2)$ at a rate of

$$\frac{2n}{m^2} \max \left(1 - \cos(\frac{2\pi k_1}{m}), 1 - \cos(\frac{2\pi k_2}{m}) \right). \tag{3.1}$$

So, when $(k_1, k_2) = (0,0)$, the block reference achieves the lower error bound, and for small k_1, k_2 deviates by a small numerical factor.

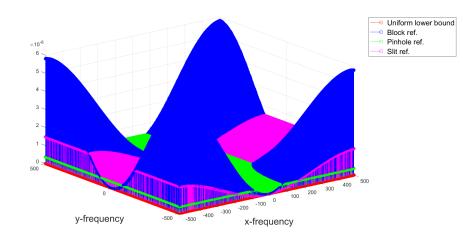
Flat Spectrum Images - Pinhole Reference Optimality

Theorem

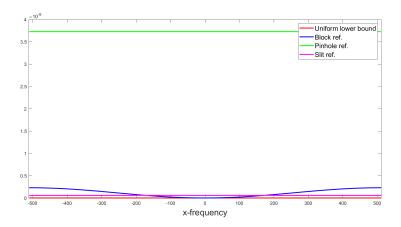
The pinhole reference R_p is the unique reference choice which provides a constant scaling to all frequencies.

So, the pinhole reference is ideal for "flat-spectrum" images.

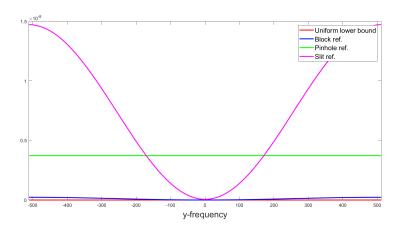
Frequency Scaling Comparison



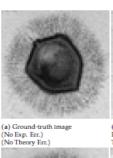
Frequency Scaling Comparison



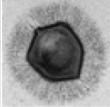
Frequency Scaling Comparison



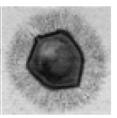
Decaying Spectrum Image (Typical)



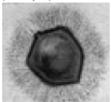
(No Exp. Err.) (No Theory Err.)



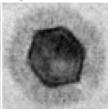
(b) Ref. Deconv. with block ref. Exp. Err. = 0.0202Theory Err. = 0.0195



(c) Ref. Decony, with slit ref. Exp. Err. = 0.0277Theory Err. = 0.0227

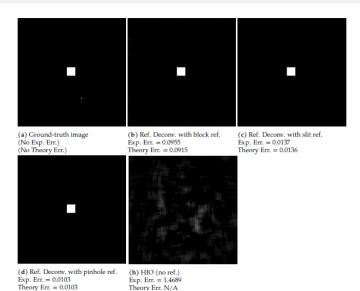


(d) Ref. Deconv. with pinhole ref. Exp. Err. = 0.0606Theory Err. = 0.0799



(h) HIO (no ref.) Exp. Err. = 0.1474Theory Err. N/A

Flat Spectrum Image



Thank you!