Holographic Phase Retrieval and Dual-Reference Design

David Barmherzig

March 7, 2019

Collaborators

- Dr. Ju Sun
- Prof. Emmanuel Candès
- Dr. T.J. Lane
- Po-Nan Li

Papers

Holographic Phase Retrieval and Optimal Reference Design David A. Barmherzig, Ju Sun, Emmanuel J. Candès, T.J. Lane, and Po-Nan Li. Submitted to Inverse Problems, 2018. arxiv.org/abs/1901.06453

 Dual-Reference Design for Holographic Coherent Diffraction Imaging

David A. Barmherzig, Ju Sun, Emmanuel J. Candès, T.J. Lane, and Po-Nan Li.

Submitted to SampTA, 2019. arxiv.org/abs/1902.02492

Available at davidbar.org/publications

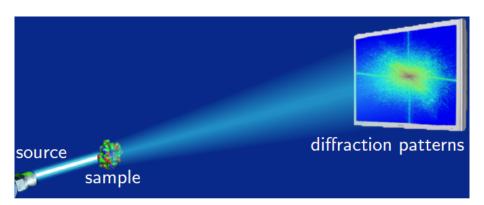
Table of Contents

- The Holographic Phase Retrieval Problem
- Referenced Deconvolution Algorithm
- Error Analysis
- Dual-Reference Design
- **Experiments**

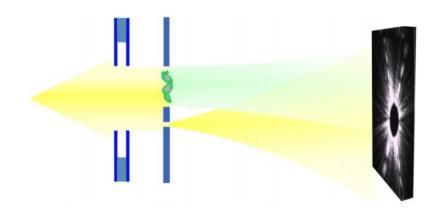
The Phase Retrieval Problem

Given
$$\left| \widehat{X}(\omega) \right|^2 \doteq \left| \int_{t \in T} X(t) e^{-i\omega t} \right|^2, \quad \omega \in \Omega,$$
 Recover X .

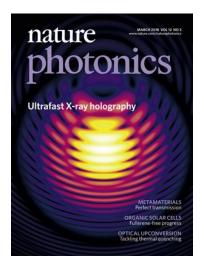
Coherent Diffraction Imaging (CDI)



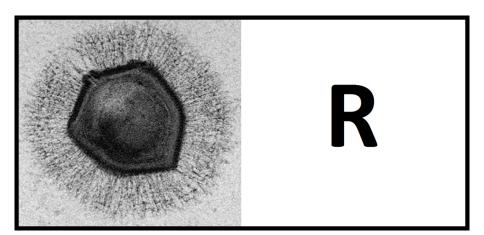
Holographic CDI



Holographic CDI



Specimen and Reference Setup



Popular Reference Choices

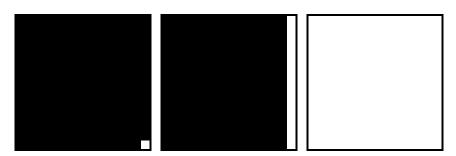


Figure: Pinhole, Slit, and Block references.

The Holographic Phase Retrieval Problem

Given
$$R \in \mathbb{R}^{n \times n}$$
, $Y = \left| \mathcal{F}([X, R]) \right|^2 \in \mathbb{R}^{m \times m}$, Recover $X \in \mathbb{R}^{n \times n}$.

The Holographic Phase Retrieval Problem

Given
$$R \in \mathbb{R}^{n \times n}$$
, $Y = \left| \mathcal{F}([X, R]) \right|^2 \in \mathbb{R}^{m \times m}$, Recover $X \in \mathbb{R}^{n \times n}$.

Knowing R makes a huge difference!

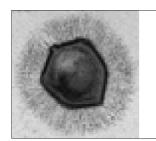
Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(Y)$.

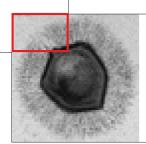
- Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(Y)$.
- Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}.$

Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(Y)$.

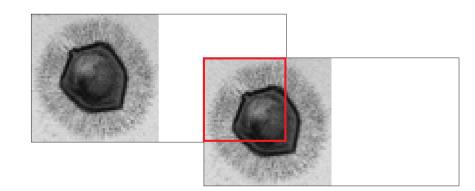
Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$. This is one quadrant of the cross-correlation of X and R.

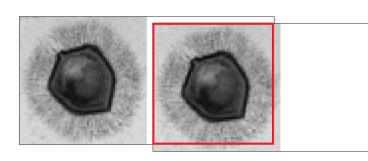
Referenced Deconvolution Algorithm





Exact Recovery for Noiseless Measurements





- Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(Y)$.
- Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$. This is one quadrant of the cross-correlation of X and R.
- Step 3: De-convolve R and X.

$$\operatorname{vec}(C_{[X,R]}) = M_R \operatorname{vec}(X).$$

$$\operatorname{vec}(X) = M_R^{-1} \operatorname{vec}(C_{[X,R]}).$$

For

$$R = \begin{bmatrix} r_{00} & r_{01} & r_{02} \\ r_{10} & r_{11} & r_{12} \\ r_{20} & r_{21} & r_{22} \end{bmatrix},$$

Altogether, this gives a linear relationship between Y and X!

$$\operatorname{vec}(X) = T_R \operatorname{vec}(Y).$$

Noisy Data

Given Y^* , a possibly noise-corrupted version of $Y = |\mathcal{F}([X,R])|^2$, this procedure, – the **Referenced Deconvolution Algorithm** – gives X^* , the solution of

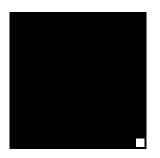
$$\min_{X} \frac{1}{2} \Big\| Y^\star - \left| \mathcal{F}([X,R]) \right|^2 \Big\|^2.$$

Special Cases

For popular reference choices, M_R has a special structure that is fast to invert!

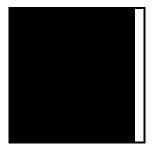
This places within a broader context various reference-specific algorithms.

Pinhole Reference



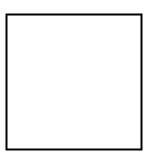
$$M_R = I_{n^2}$$
.

Slit Reference



 $M_R = I_n \otimes D_n$, where D_n is the difference matrix (1's on diagonal, -1's on first subdiagonal).

Block Reference



 $M_R = D_n \otimes D_n$.

Error Formula

Since
$$\operatorname{vec}(X) = T_R \operatorname{vec}(Y)$$
 and $\operatorname{vec}(X^*) = T_R \operatorname{vec}(Y^*)$,

$$\mathbb{E}||X^* - X||_F^2$$

$$= \left\langle T_R^* T_R, \mathbb{E}\Big(\operatorname{vec}(Y^*) - \operatorname{vec}(Y)\Big) \Big(\operatorname{vec}(Y^*) - \operatorname{vec}(Y)\Big)^* \right\rangle_F.$$

Poisson shot noise model

Quantum mechanics \to # of photons emitted by an X-ray source is random (Poisson process)

Np: total # of photons reaching detector

$$\hat{Y} \sim_{\text{ind}} \frac{\|Y\|_1}{N_p} \text{Pois}\Big(\frac{N_p}{\|Y\|_1}Y\Big),$$

Poisson noise error formula

$$\mathbb{E}||X^* - X||_F^2 = \left\langle T_R^* T_R, \frac{||Y||_1}{N_p} \operatorname{diag}(\operatorname{vec}(Y)) \right\rangle_F$$
$$= \left\langle S_R, \frac{||Y||_1}{N_p} Y \right\rangle_F,$$

where
$$S_R = \text{reshape}\Big(\operatorname{diag}(T_R^*T_R), m, m\Big).$$

Poisson noise error formula

$$\mathbb{E}||X^* - X||_F^2 = \left\langle T_R^* T_R, \frac{||Y||_1}{N_p} \operatorname{diag}(\operatorname{vec}(Y)) \right\rangle_F$$
$$= \left\langle S_R, \frac{||Y||_1}{N_p} Y \right\rangle_F,$$

where $S_R = \text{reshape} \Big(\operatorname{diag}(T_R^*T_R), m, m \Big).$ \rightarrow each frequency $Y(k_1, k_2)$ is scaled by the **reference scaling factor** S_R .

Uniform Lower Bound on S_R

Theorem

For any reference R and all $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_R(k_1, k_2) \ge \frac{1}{m^4}.$$

Pinhole Reference

Theorem

For the pinhole reference R_p and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_p}(k_1, k_2) = \frac{n^2}{m^4}.$$

Slit Reference

Theorem

For the slit reference R_s and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_s}(k_1, k_2) = \frac{n}{m^2} \left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_2}{m}) \right) \right).$$

Block Reference

Theorem

For the block reference R_b and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_b}(k_1, k_2) = \left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_1}{m})\right)\right) \left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_2}{m})\right)\right).$$

Block Reference

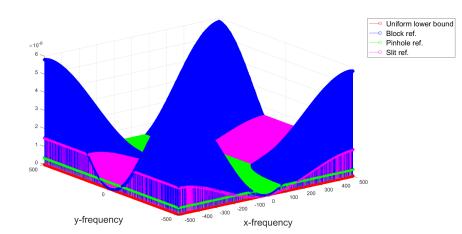
Theorem

For the block reference R_b , $S_{R_b}(k_1,k_2)$ deviates from the uniform lower bound on $S_R(k_1,k_2)$ at a rate of

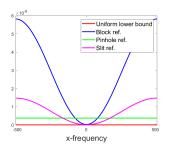
$$\frac{2n}{m^2} \max\left(1 - \cos(\frac{2\pi k_1}{m}), 1 - \cos(\frac{2\pi k_2}{m})\right). \tag{3.1}$$

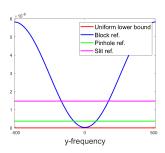
So, when $(k_1,k_2)=(0,0)$, the block reference achieves the lower error bound, and for small k_1,k_2 deviates by a small numerical factor.

Frequency Scaling Comparison

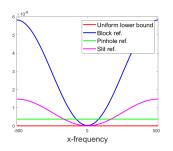


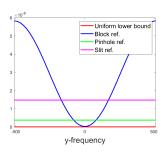
Frequency Scaling Comparison (Border Cross-Sections)





Frequency Scaling Comparison (Border Cross-Sections)

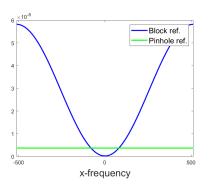




→ Tradeoffs between minimizing low or high frequencies

Can we get the best of both worlds?

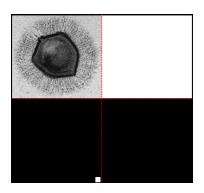
Block and Pinhole



Block \rightarrow optimal for low-freq. scaling Pinhole \rightarrow optimal for high-freq. scaling

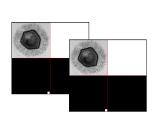
Dual-Reference

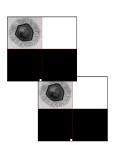
Let's try combining them!



$$\mathcal{X} = \begin{bmatrix} X & R_B \\ R_P & \mathbf{0}_{n \times n} \end{bmatrix}$$

Autocorrelation contains clean copies of specimen-block and specimen-pinhole cross-correlations





So two systems of equations:

$$M_{R_B} \operatorname{vec}(X) = \operatorname{vec}(C^{\diamond}_{[X,R_B]}),$$

and

$$M_{R_P} \operatorname{vec}(X) = \operatorname{vec}(C^{\diamond}_{[X,R_P]}).$$

Stack these two systems:

$$\begin{bmatrix} M_{R_B} \\ M_{R_P} \end{bmatrix} \operatorname{vec}(X) = \begin{bmatrix} \operatorname{vec}(C_{[X,R_B]}^{\diamond}) \\ \operatorname{vec}(C_{[X,R_P]}^{\diamond}) \end{bmatrix}.$$

Take the least-squares solution:

$$\min_{X \in \mathbb{C}^{n \times n}} \| M \operatorname{vec}(X) - b \|^2,$$

where
$$M = \begin{bmatrix} M_{R_B} \\ M_{R_P} \end{bmatrix}, b = \begin{bmatrix} \operatorname{vec}(C^{\diamond}_{[X,R_B]}) \\ \operatorname{vec}(C^{\diamond}_{[X,R_P]}) \end{bmatrix}$$
.

Take the least-squares solution:

$$\min_{X \in \mathbb{C}^{n \times n}} \| M \operatorname{vec}(X) - b \|^2,$$

where
$$M = \begin{bmatrix} M_{R_B} \\ M_{R_P} \end{bmatrix}, b = \begin{bmatrix} \operatorname{vec}(C^{\diamond}_{[X,R_B]}) \\ \operatorname{vec}(C^{\diamond}_{[X,R_P]}) \end{bmatrix}.$$

Hence,

$$vec(X) = M^{\dagger}b = (M^{T}M)^{-1}M^{T}b.$$

Definition

- Let $F \in \mathbb{C}^{m \times (4n-1)}$ be given by $F(k,t) = e^{-2\pi i k t/m} \ \forall \ (k,t) \in \{0,\dots,m-1\} \times \{-(2n-1),\dots,2n-1\}.$
- $Y = \mathcal{F}(\mathcal{X}) = F\mathcal{X}F^T.$
- Let \mathcal{P}_{1B} , \mathcal{P}_{2B} , \mathcal{P}_{1P} , $\mathcal{P}_{2P} \in \mathbb{R}^{n \times (4n-1)}$ be given by $\mathcal{P}_{1B} = \mathcal{P}_{2P} = [\mathbf{0}_{n \times n}, I_n, \mathbf{0}_{n \times (2n-1)}]$, and $\mathcal{P}_{2B} = \mathcal{P}_{1P} = [I_n, \mathbf{0}_{n \times (3n-1)}]$.
 - $P_{2B} = P_{1P} = [I_n, \mathbf{0}_{n \times (3n-1)}].$

• Let
$$B_1 = \mathcal{P}_{2B}F^*, B_2 = \mathcal{P}_{1B}F^*, P_1 = \mathcal{P}_{2P}F^*, P_2 = \mathcal{P}_{1P}F^*.$$

$$\operatorname{vec}(X) = T_{R_D} \operatorname{vec}(Y),$$

where

$$T_{R_D} = \frac{1}{m^2} M^{\dagger} \begin{bmatrix} B_1 \otimes B_2 \\ P_1 \otimes P_2 \end{bmatrix}.$$

Noisy Data

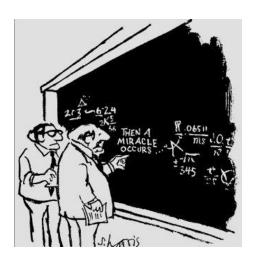
Given Y^* , a possibly noise-corrupted version of $Y = |\mathcal{F}(\mathcal{X})|^2$, this procedure, – the **Referenced Deconvolution Algorithm** – gives X^* , the solution of

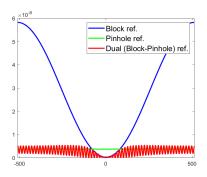
$$\min_{X} \frac{1}{2} \left\| Y^{\star} - \left| \mathcal{F}(\mathcal{X}) \right|^{2} \right\|^{2}.$$

Error Analysis

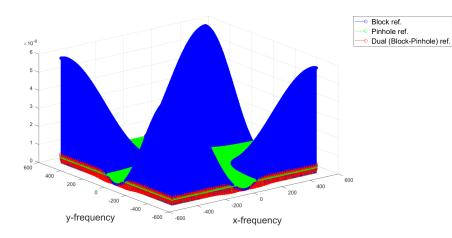
$$\mathbb{E}||X^{\star} - X||_F^2 = \left\langle S_{R_D}, \frac{||Y||_1}{N_p} Y \right\rangle_F,$$

where S_{R_D} is the dual-reference scaling factor.





→ Minimal scaling across the frequency spectrum!



Computing S_{R_D}

$$S_{R_D} = \mathsf{reshape}(\mathsf{diag}(T_{R_D}^*T_{R_D}), n, n).$$

Computing S_{R_D}

$$S_{R_D} = \mathsf{reshape}(\mathsf{diag}(T_{R_D}^*T_{R_D}), n, n).$$

Or,

$$S_{R_D}(k_1, k_2) = ||T_{R_D}(mk_1 + k_2, :)||^2.$$

Computing S_{R_D}

$$S_{R_D} = \mathsf{reshape}(\mathsf{diag}(T_{R_D}^*T_{R_D}), n, n).$$

Or,

$$S_{R_D}(k_1, k_2) = ||T_{R_D}(mk_1 + k_2, :)||^2.$$

ightarrow Can be highly parallelized, and leverage Kronecker factorization in T_{R_D}

Analytical Form of S_{R_D}

Definition

For $t, s \in \{0, ..., n-1\}$, let

$$u_s(t) = \frac{1}{\sqrt{\frac{n}{2} + \frac{1}{4}}} \sin \frac{(s + \frac{1}{2})(t+1)}{n + \frac{1}{2}} \pi,$$

$$v_s(t) = \frac{1}{\sqrt{\frac{n}{2} + \frac{1}{4}}} \cos \frac{(s + \frac{1}{2})(t + \frac{1}{2})}{n + \frac{1}{2}} \pi,$$

and

$$\sigma_s = \left[2 - 2\cos\left(\frac{s + \frac{1}{2}}{n + \frac{1}{2}}\pi\right)\right]^{-1/2}.$$

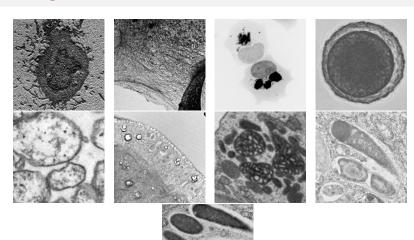
Analytical Form of S_{R_D}

Theorem

For
$$k_1, k_2 \in \{0, \dots, m-1\}$$
,

$$S_{R_D}(k_1, k_2) = \frac{1}{m^4} \sum_{r,s=0}^{n-1} \left| \frac{\sigma_r \sigma_s}{\sigma_r^2 \sigma_s^2 + 1} u_r^{\top} B_1(:, k_1) u_s^{\top} B_2(:, k_2) \right| + \frac{1}{\sigma_r^2 \sigma_s^2 + 1} v_r^{\top} P_1(:, k_1) v_s^{\top} P_2(:, k_2) \right|^2.$$

Test Images



Recovery From Noisy Simulated Data

Image	Block Ref.	Pinhole Ref.	Dual Ref.	HIO
Mimivirus	3.70 (3.79)	46.9 (63.8)	1.51 (1.45)	93.7
Influenza	18.7 (18.5)	50.7 (31.4)	4.64 (4.70)	695
Stroma cells	9.19 (8.91)	23.1 (44.1)	2.78 (2.63)	1607
mCherry proteins	1.84 (1.84)	139 (131)	0.927 (0.908)	403
Embryo	6.30 (6.29)	54.2 (53.8)	2.62 (2.71)	642
Oocytes	7.01 (6.83)	44.1 (78.3)	2.66 (2.70)	883
S. pistallata	4.02 (3.93)	148 (83.7)	1.29 (1.31)	335
Aragonite	11.6 (11.5)	52.1 (34.6)	4.41 (4.41)	1767
Salmonella WT	9.07 (8.81)	44.3 (60.1)	3.33 (2.97)	708
sifA	7.27 (7.15)	42.6 (54.6)	2.82 (2.86)	1765

Table: Empirical (and expected) relative errors, scaled by 10^{-4}

SLAC Experiment

Thank you!