Thesis Defense

David Barmherzig

May 23, 2019

Thesis Overview

The Phase Retrieval Problem

Given
$$Y_{\mathbf{k}} = |\mathcal{A}(X)_{\mathbf{k}}|^2$$
, $\mathbf{k} \in \mathcal{K}$
Recover X ,

where A is a known linear operator.

Fourier Phase Retrieval

Given
$$Y_{\mathbf{k}} = |\mathcal{A}(X)_{\mathbf{k}}|^2$$
, $\mathbf{k} \in \mathcal{K}$
Recover X .

- Fourier phase retrieval: $Y = |\mathcal{F}(X)|^2$, where \mathcal{F} is a Fourier transform operator.
- Occurs in scientific imaging diffraction imaging, optics, crystallography.

Gaussian Phase Retrieval

$$\begin{aligned} & \textbf{Given} \quad Y_{\mathbf{k}} = |\mathcal{A}(X)_{\mathbf{k}}|^2, \quad \mathbf{k} \in \mathcal{K} \\ & \textbf{Recover} \quad X. \end{aligned}$$

- Gaussian phase retrieval: $y_k = |\mathbf{a}_k^T \mathbf{x}|, k = 1, ..., m$, where \mathbf{a}_k 's are Gaussian vectors.
- System of random quadratic equations.

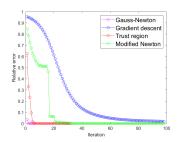
Holographic Phase Retrieval and Reference Design

Introduces a general mathematical and statistical framework for the *holographic phase retrieval* problem, and proposes a new *dual-reference* design.

- On Block-Reference Coherent Diffraction Imaging
 David A. Barmherzig, Ju Sun, T.J. Lane, and Po-Nan Li. OSA
 Imaging and Applied Optics Congresss, 2018.
- Holographic Phase Retrieval and Optimal Reference Design
 David A. Barmherzig, Ju Sun, Po-Nan Li, T.J. Lane, and Emmanuel
 J. Candès. Inverse Problems, 2019.
- Dual-Reference Design for Holographic Coherent Diffraction Imaging David A. Barmherzig, Ju Sun, Po-Nan Li, T.J. Lane, and Emmanuel J. Candès. SampTA, 2019.

Theory and Algorithms for 1D Fourier Phase Retrieval

- Problem theory
- Semidefinite programming recovery methods
- Least-squares recovery methods



1D Phase Retrieval and Spectral Factorization
David Barmherzig and Ju Sun. OSA Congress on Imaging and Applied
Optics, 2018.

Biconvex Optimization for Gaussian Phase Retrieval

Formulate Gaussian phase retrieval $(y_k = |\mathbf{a}_k^T \mathbf{x}|, k = 1, \cdots, m)$ as a biconvex and biquadratic optimization problem:

minimize_{$$\mathbf{z}, \mathbf{w} \in \mathbb{R}^n$$} $f(\mathbf{z}, \mathbf{w}) \doteq \frac{1}{4m} \sum_{k=1}^m (y_k - \mathbf{a}_k^T \mathbf{z} \mathbf{a}_k^T \mathbf{w})^2$
subject to $\mathbf{z} = \mathbf{w}$.

- Optimization via ADMM and block coordinate descent
- Proof of linear convergence using block coordinate descent

A Local Analysis of Block Coordinate Descent for Gaussian Phase Retrieval David Barmherzig and Ju Sun. $10^{\rm th}$ NIPS Workshop on Optimization for Machine Learning, 2017.

Holographic Phase Retrieval and Reference Design

Coherent Diffraction Imaging (CDI)

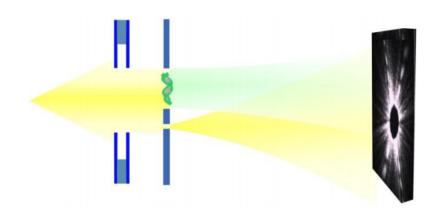
The Phase Retrieval Problem in CDI

Given
$$\left|\widehat{X}(\omega)\right|^2 \doteq \left|\int_{t\in T} X(t)e^{-i\omega t}\right|^2, \quad \omega\in\Omega,$$
Recover X .

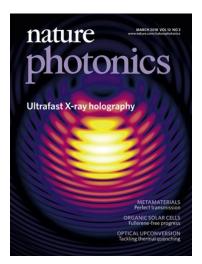
Can discretize this problem as:

$$\begin{aligned} & \text{Given} & & |\widehat{X}|^2 \in \mathbb{R}^{m \times m}, \\ & \text{Recover} & & X \in \mathbb{R}^{n \times n}. \end{aligned}$$

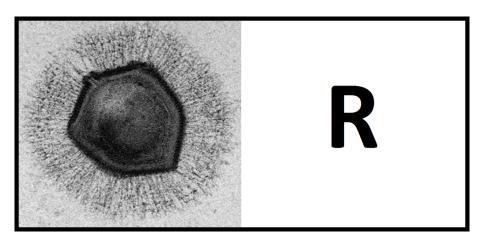
Holographic CDI



Holographic CDI



Specimen and Reference Setup



The Holographic Phase Retrieval Problem

Given
$$R \in \mathbb{R}^{n \times n}$$
, $\left|\widehat{[X,R]}\right|^2 \in \mathbb{R}^{m \times m}$, Recover $X \in \mathbb{R}^{n \times n}$.

The Holographic Phase Retrieval Problem

Given
$$R \in \mathbb{R}^{n \times n}$$
, $\left|\widehat{[X,R]}\right|^2 \in \mathbb{R}^{m \times m}$, Recover $X \in \mathbb{R}^{n \times n}$.

Knowing R makes a huge difference!

We will now achieve:

- Uniqueness guarantee
- Algorithm with provable recovery
- Closed-form expression a linear operation! rather than iterative

Algorithm: Referenced Deconvolution

Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1} \left(\left| \widehat{[X,R]} \right|^2 \right)$.

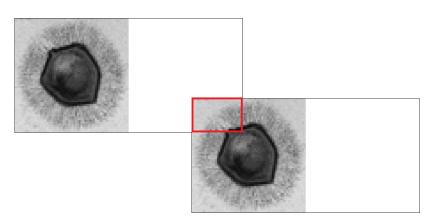
Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(|\widehat{[X,R]}|^2)$.

Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}.$

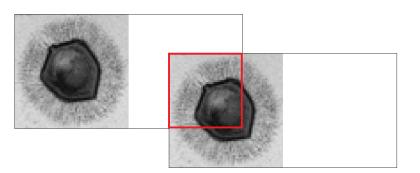
Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(|\widehat{[X,R]}|^2)$.

Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$. This is one quadrant of the cross-correlation of X and R.

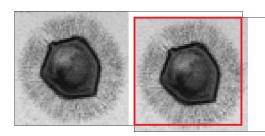
Referenced Deconvolution Algorithm



Referenced Deconvolution Algorithm



Referenced Deconvolution Algorithm



Step 1: Transform to the time domain $A_{[X,R]} = \mathcal{F}^{-1}(|\widehat{[X,R]}|^2)$.

Step 2: Extract $C^{\diamond}_{[X,R]}$, the top-left quadrant of $A_{[X,R]}$. This is one quadrant of the cross-correlation of X and R.

Step 3: Deconvolve X and R.

$$\operatorname{vec}(X) = M_R^{-1} \operatorname{vec}(C_{[X,R]}^{\diamond}).$$

For

$$R = \begin{bmatrix} r_{00} & r_{01} & r_{02} \\ r_{10} & r_{11} & r_{12} \\ r_{20} & r_{21} & r_{22} \end{bmatrix},$$

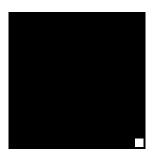
Altogether, this gives a linear relationship between $Y = \left|\widehat{[X,R]}\right|^2$ and X!

$$\operatorname{vec}(X) = T_R \operatorname{vec}(Y).$$

Special Cases

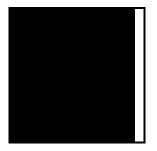
For popular reference choices, M_R has a special structure.

Pinhole Reference



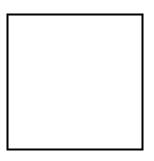
$$M_R = I_{n^2}$$
.

Slit Reference



 $M_R = I_n \otimes D_n$, where D_n is the difference matrix (1's on diagonal, -1's on first subdiagonal).

Block Reference



 $M_R = D_n \otimes D_n$.

Error Analysis

Frror Formula

Recovery from clean and noisy data, respectively:

- $\operatorname{vec}(X) = T_R \operatorname{vec}(Y)$
- $\operatorname{vec}(\widetilde{X}) = T_R \operatorname{vec}(\widetilde{Y})$

Expected recovery error:

$$\begin{split} & \mathbb{E} \| \widetilde{X} - X \|_F^2 \\ & = \left\langle T_R^* T_R, \mathbb{E} \Big(\operatorname{vec}(\widetilde{Y}) - \operatorname{vec}(Y) \Big) \Big(\operatorname{vec}(\widetilde{Y}) - \operatorname{vec}(Y) \Big)^* \right\rangle_F. \end{split}$$

Poisson shot noise model

Quantum mechanics \to # of photons emitted by an X-ray source is random (Poisson process)

Np: total # of photons reaching detector

$$\widetilde{Y} \sim_{\text{ind}} \frac{\|Y\|_1}{N_p} \text{Pois}\Big(\frac{N_p}{\|Y\|_1}Y\Big).$$

Poisson noise error formula

$$\mathbb{E}\|\widetilde{X} - X\|_F^2 = \left\langle T_R^* T_R, \frac{\|Y\|_1}{N_p} \operatorname{diag}(\operatorname{vec}(Y)) \right\rangle_F$$
$$= \left\langle S_R, \frac{\|Y\|_1}{N_p} Y \right\rangle_F,$$

where
$$S_R = \text{reshape}\Big(\operatorname{diag}(T_R^*T_R), m, m\Big).$$

Poisson noise error formula

$$\mathbb{E}\|\widetilde{X} - X\|_F^2 = \left\langle T_R^* T_R, \frac{\|Y\|_1}{N_p} \operatorname{diag}(\operatorname{vec}(Y)) \right\rangle_F$$
$$= \left\langle S_R, \frac{\|Y\|_1}{N_p} Y \right\rangle_F,$$

where $S_R = \text{reshape} \Big(\operatorname{diag}(T_R^*T_R), m, m \Big).$ \rightarrow each frequency $Y(k_1, k_2)$ is scaled by the **reference scaling factor** S_R .

Uniform Lower Bound on S_R

Theorem

For any reference R and all $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_R(k_1, k_2) \ge \frac{1}{m^4}.$$

Pinhole Reference

Theorem

For the pinhole reference R_p and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_p}(k_1, k_2) = \frac{n^2}{m^4}.$$

Slit Reference

Theorem

For the slit reference R_s and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_s}(k_1, k_2) = \frac{n}{m^2} \left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_2}{m}) \right) \right).$$

Block Reference

Theorem

For the block reference R_b and $k_1, k_2 \in \{0, \dots, m-1\}$,

$$S_{R_b}(k_1, k_2) =$$

$$\left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_1}{m})\right)\right) \left(\frac{1}{m^2} + \frac{2(n-1)}{m^2} \left(1 - \cos(\frac{2\pi k_2}{m})\right)\right).$$

Block Reference

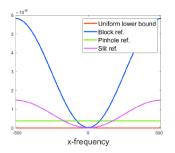
Theorem

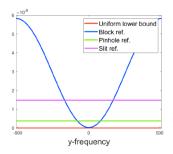
For the block reference R_b , $S_{R_b}(k_1,k_2)$ deviates from the uniform lower bound on $S_R(k_1,k_2)$ at a rate of

$$\frac{2n}{m^2} \max\left(1 - \cos(\frac{2\pi k_1}{m}), 1 - \cos(\frac{2\pi k_2}{m})\right). \tag{4.1}$$

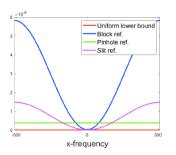
So, when $(k_1,k_2)=(0,0)$, the block reference achieves the lower error bound, and for small k_1,k_2 deviates by a small numerical factor.

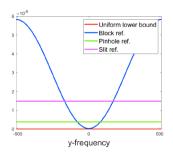
Frequency Scaling Comparison (Border Cross-Sections)





Frequency Scaling Comparison (Border Cross-Sections)

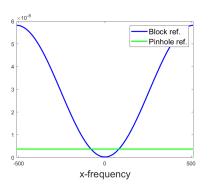




→ Tradeoffs between minimizing low or high frequencies

Can we get the best of both worlds?

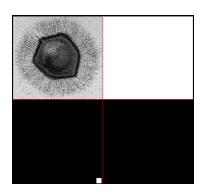
Recall:



Block \rightarrow good (optimal) for low-frequency scaling Pinhole \rightarrow good for high-frequency scaling

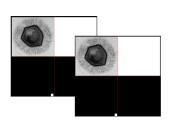
Dual-Reference

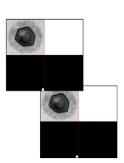
Let's try combining them!



$$\mathcal{X} = \begin{bmatrix} X & R_B \\ R_P & \mathbf{0}_{n \times n} \end{bmatrix}$$

Careful placement ensures the autocorrelation contains *non-overlapping* copies of the specimen-block and specimen-pinhole cross-correlations





So two systems of equations:

$$M_{R_B} \operatorname{vec}(X) = \operatorname{vec}(C^{\diamond}_{[X,R_B]}),$$

and

$$M_{R_P} \operatorname{vec}(X) = \operatorname{vec}(C^{\diamond}_{[X,R_P]}).$$

Stack these two systems:

$$\begin{bmatrix} M_{R_B} \\ M_{R_P} \end{bmatrix} \operatorname{vec}(X) = \begin{bmatrix} \operatorname{vec}(C_{[X,R_B]}^{\diamond}) \\ \operatorname{vec}(C_{[X,R_P]}^{\diamond}) \end{bmatrix}.$$

Take the least-squares solution:

$$\min_{X \in \mathbb{R}^{n \times n}} \| M \operatorname{vec}(X) - b \|^2,$$

where
$$M = \begin{bmatrix} M_{R_B} \\ M_{R_P} \end{bmatrix}, b = \begin{bmatrix} \operatorname{vec}(C^{\diamond}_{[X,R_B]}) \\ \operatorname{vec}(C^{\diamond}_{[X,R_P]}) \end{bmatrix}$$
.

Take the least-squares solution:

$$\min_{X \in \mathbb{R}^{n \times n}} \| M \operatorname{vec}(X) - b \|^2,$$

where
$$M = \begin{bmatrix} M_{R_B} \\ M_{R_P} \end{bmatrix}, b = \begin{bmatrix} \operatorname{vec}(C^{\diamond}_{[X,R_B]}) \\ \operatorname{vec}(C^{\diamond}_{[X,R_P]}) \end{bmatrix}.$$

Hence,

$$vec(X) = M^{\dagger}b = (M^{T}M)^{-1}M^{T}b.$$

Gives linear recovery of signal X from data Y:

$$\operatorname{vec}(X) = T_{R_D} \operatorname{vec}(Y),$$

where

$$T_{R_D} = \frac{1}{m^2} M^{\dagger} \begin{bmatrix} B_1 \otimes B_2 \\ P_1 \otimes P_2 \end{bmatrix},$$

and

- $F \in \mathbb{C}^{m \times (4n-1)}$ is given by $F(k,t) = e^{-2\pi i kt/m} \ \forall \ (k,t) \in \{0,\dots,m-1\} \times \{-(2n-1),\dots,2n-1\},$
- $Y = \mathcal{F}(\mathcal{X}) = F\mathcal{X}F^T$
- \mathcal{P}_{1B} , \mathcal{P}_{2B} , \mathcal{P}_{1P} , \mathcal{P}_{2P} ∈ $\mathbb{R}^{n\times(4n-1)}$ are given by $\mathcal{P}_{1B} = \mathcal{P}_{2P} = [\mathbf{0}_{n\times n}, I_n, \mathbf{0}_{n\times(2n-1)}]$, and $\mathcal{P}_{2B} = \mathcal{P}_{1P} = [I_n, \mathbf{0}_{n\times(3n-1)}]$,
- $B_1 = \mathcal{P}_{2B}F^*, B_2 = \mathcal{P}_{1B}F^*, P_1 = \mathcal{P}_{2P}F^*, P_2 = \mathcal{P}_{1P}F^*.$

Error Analysis

$$\mathbb{E}\|\widetilde{X} - X\|_F^2 = \left\langle S_{R_D}, \frac{\|Y\|_1}{N_p} Y \right\rangle_F,$$

where S_{R_D} is the dual-reference scaling factor.

Analytical Form of S_{R_D}

Definition

For $t, s \in \{0, \dots, n-1\}$, let

$$u_s(t) = \frac{1}{\sqrt{\frac{n}{2} + \frac{1}{4}}} \sin\left(\frac{(s + \frac{1}{2})(t+1)}{n + \frac{1}{2}}\pi\right),$$

$$v_s(t) = \frac{1}{\sqrt{\frac{n}{2} + \frac{1}{4}}} \cos\left(\frac{(s + \frac{1}{2})(t + \frac{1}{2})}{n + \frac{1}{2}}\pi\right),$$

and

$$\sigma_s = \left[2 - 2\cos\left(\frac{s + \frac{1}{2}}{n + \frac{1}{2}}\pi\right)\right]^{-1/2}.$$

Analytical Form of S_{R_D}

Theorem

For
$$k_1, k_2 \in \{0, \dots, m-1\}$$
,

$$\begin{split} S_{R_D}(k_1, k2) &= \frac{1}{m^4} \sum_{r,s=0}^{n-1} \left| \frac{\sigma_r \sigma_s}{\sigma_r^2 \sigma_s^2 + 1} u_r^\top B_1(:, k_1) u_s^\top B_2(:, k_2) \right. \\ &+ \left. \frac{1}{\sigma_r^2 \sigma_s^2 + 1} v_r^\top P_1(:, k_1) v_s^\top P_2(:, k_2) \right|^2. \end{split}$$

Computing S_{R_D}

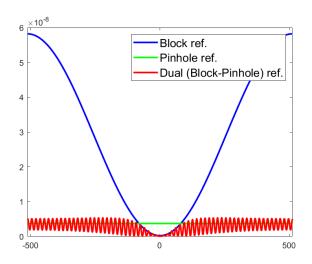
$$S_{R_D} = \mathsf{reshape}(\mathsf{diag}(T_{R_D}^*T_{R_D}), n, n).$$

Or,

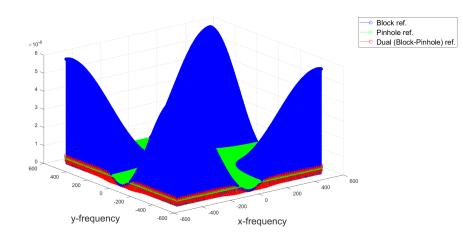
$$S_{R_D}(k_1, k_2) = ||T_{R_D}(mk_1 + k_2, :)||^2.$$

 \rightarrow Can leverage Kronecker product factorization of T_{R_D} to make this highly parallelized

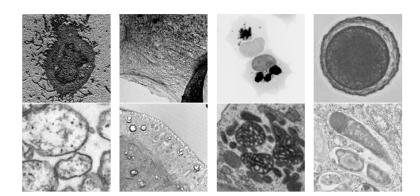
The moment of truth...



 \rightarrow Minimal error scaling across the frequency spectrum!



Test Images



Recovery From Noisy Simulated Data

Image	Block Ref.	Pinhole Ref.	Dual Ref.	HIO
Mimivirus	3.70 (3.79)	46.9 (63.8)	1.51 (1.45)	93.7
Influenza	18.7 (18.5)	50.7 (31.4)	4.64 (4.70)	695
Stroma cells	9.19 (8.91)	23.1 (44.1)	2.78 (2.63)	1607
mCherry proteins	1.84 (1.84)	139 (131)	0.927 (0.908)	403
Embryo	6.30 (6.29)	54.2 (53.8)	2.62 (2.71)	642
Oocytes	7.01 (6.83)	44.1 (78.3)	2.66 (2.70)	883
S. pistallata	4.02 (3.93)	148 (83.7)	1.29 (1.31)	335
Aragonite	11.6 (11.5)	52.1 (34.6)	4.41 (4.41)	1767
Salmonella WT	9.07 (8.81)	44.3 (60.1)	3.33 (2.97)	708
sifA	7.27 (7.15)	42.6 (54.6)	2.82 (2.86)	1765

Table: Empirical (and expected) relative errors, scaled by 10^{-4} .

The Future

Optical/CDI experiments in development...!

Thank you!

- Professor Emmanuel Candès
- Professor Walter Murray
- Professor Gordon Wetzstein
- Professor Jon Claerbout
- Professor Peter Kitanidis
- Dr. Ju Sun
- Dr. T.J. Lane and Po-Nan Li
- And many other collaborators, colleagues, and friends!